Changes in temperature, salinity, currents, mean ripple effects elsewhere

When the wind starts to blow and the rains start to fall, most people don’t blame the oceans for their plight. But the waters that cover more than 70 percent of Earth’s surface are intimately linked to the planet’s climate.

“Many people think climate is the weather behind the scenes, the ocean is the hidden player behind climate,” said Hal Borns, a post-doctoral researcher at the University of Maine.

The ocean and the atmosphere are part of the same system, Borns said. “You can’t have one without the other.”

When the wind blows, it stirs the ocean, generating waves and currents. The result is a transfer of energy from one place to another.

The ocean also has a profound effect on the climate. It absorbs and stores vast amounts of heat, slowing the impact of a climate shift.

The ocean also plays a role in carbon dioxide removal. When carbon dioxide is released into the atmosphere, the oceans absorb it. But the ocean can only absorb so much before the concentration of carbon dioxide increases.

“Every year, schoolchildren hear the words ‘the oceans’ role in climate change’,” Borns said. “But they don’t understand the science that goes into this.”

The ocean is also a key element of understanding past climates. Scientists use the ocean to study past climate events, such as the Little Ice Age, which occurred during the 17th and 18th centuries.

The ocean is also a key player in the carbon cycle. Carbon dioxide, which is released into the atmosphere by human activities, is absorbed by the oceans. But as the oceans absorb more carbon dioxide, they become more acidic.

To better understand, and predict, the behavior of these systems, scientists need to understand how they interact with each other. This is where computer models come in.

Scientists use computer models to simulate the behavior of the ocean and the atmosphere. These models can help scientists understand how the ocean and atmosphere interact and how they respond to changes in climate.

Scientists also use computer models to study the impact of human activities on the ocean. For example, they can use models to study the impact of carbon dioxide emissions on the ocean and the atmosphere.

The ocean is a key player in the carbon cycle, and it is also a key player in the climate system. Scientists need to understand the ocean, and they need to understand the climate system, to understand how the ocean and atmosphere interact and how they respond to changes in climate.

Scientists also use computer models to study the impact of human activities on the ocean. For example, they can use models to study the impact of carbon dioxide emissions on the ocean and the atmosphere.

The ocean is a key player in the carbon cycle, and it is also a key player in the climate system. Scientists need to understand the ocean, and they need to understand the climate system, to understand how the ocean and atmosphere interact and how they respond to changes in climate.