CLIMATE CHANGE ## Solar Forcing of Climate Through Changes in Atmospheric Circulation Although the sun is the driver of Earth's climate, demonstrating a direct connection between solar variability and climate change has proved difficult. One of the problems is that while solar particle emissions and short wave radiation change by large amounts in a solar cycle. minimally and irradiance varies accurate measurements have only been available in the satellite era. Some associations however have been observed between historical records of solar activity and climate change and also between variability in proxies cosmogenic for solar variability and millennial scale variability in paleoclimate records from moraine sequences, Greenland ice cores, and lake sediments by Climate Change Institute researchers (Denton and Karlen, 1973; O'Brien et al., 1995; Mayewski et al., 1993, 1997, 2004; Stager et al., 2004). Although considerable attention has paid to the record been temperature change over the last few centuries, the range and rate of change of atmospheric circulation and hydrology remain elusive. Examination of globally distributed (pole-equator-pole), high resolution, climate proxy records by Climate Change Institute researchers demonstrates major changes in these variables over the last 10,000 years (see summaries by Mayewski et al., 2004; Maasch et al., in press). Further this work reveals first-order а relationship between a variable Sun changes in atmospheric circulation and hydrology (Figure 1) that is not as apparent with other climate forcing agents (Figures 2). From Maasch et al., in press 2005 – Eight paleoclimate records from locations corresponding to red dots on map overlay arranged by latitude from north to south: (a) GISP2 K^+ , (b) Punta Laguna $\delta^{18}O$, (c) Cariaco Basin %titanium, (d) Naivasha Lake level, (e) Lake Victoria % shallow water diatoms, (f) Makapansgat speleothem $\delta^{13}C$, (g) Core GeoB 3313-1 iron intensity, (h) Siple Dome Na⁺ demonstrating a first order relationship to solar variability ($\Delta^{14}C$ proxy for solar variability (red, from Stuiver and Braziunas, 1989)). Annually dated, instrumentally calibrated, proxies for atmospheric circulation from several Antarctic ice cores (ITASE, Siple Dome, Law Dome) reveal decadal-scale associations with a South Pole ice core ¹⁰Be proxy (from Bard et al., 2000) for solar variability over the last 600 years (Figure 3) and annual scale associations with solar variability since AD 1720. Increased (decreased) solar irradiance associated with is increased (decreased) zonal wind strength near the edge of the Antarctic polar vortex. The association is particularly strong in both the Indian and Pacific Oceans and as such may contribute understanding climate forcing that controls Australia and other drought in Southern Hemisphere climate events. The mechanism for the association between solar variability and atmospheric circulation suggested by Mayewski et al. (in press 2005) may be found through previous empirical and modeling studies whereby increased solar ultra-violet (UV) radiation leads to increased production of stratospheric ozone, resulting in increased (decreased) temperatures the lower stratosphere (troposphere) (McCormack and Hood, 1996; Chandra and others, 1996; Randel and Cobb, 1999), and consequently an increase in the thermal gradient from high to low latitudes attended by an increase in lower tropospheric zonal wind speeds over the Northern Hemisphere (Shindell and others, 1999). From Maasch et al., in press 2005 - Examination of several climate forcing agents: (a) proxies for solar variability including $\Delta^{14}C$ measured in tree rings (red, from Stuiver and Braziunas, 1989) and 10 Be measured in ice from Greenland (green, from Beer, 2000) and South Pole (blue, from Bard et al., 2000), (b) summer and winter insolation at latitudes $60^{\circ}N$, $20^{\circ}N$, equator, $20^{\circ}S$, and $60^{\circ}S$ (from Berger, 1978), (c) greenhouse gas concentration, atmospheric CO_2 (light blue, from Etheridge et al., 1998) and CH_4 (green, from Etheridge et al., 1998) along with human population (pink), and (d) SO_4 residuals (volcanic aerosols) measured in ice from Greenland (from Zielinski et al., 1996). From Mayewski et al., in press 2005. Left side(first three) – correlation between ice core glaciochemical series and NCEP/NCAR climate reanalysis data. Right side – comparison between solar variability (¹⁰Be measured in ice from South Pole (from Bard et al., 2000) and ice core climate proxy series. Left side (bottom) – modern association between solar flux and zonal wind in the Southern Hemisphere utilizing NCEP/NCAR reanalysis data is similar to climate proxies developed from ice core series (left side). From Mayewski et al., in press 2005. Eckert-Greifendorff global projection displaying the location of ice core sites utilized in this study as well as the position of the seasonal range of both the northern and southern polar fronts and the ITCZ for general perspective. 1 (GISP2), 2 (20D), 3 (Mt. Logan), 4 (ITASE 01-2), 5 (ITASE 00-1), 6 (Siple Dome), and 7 (Law Dome). FIG. 4 ## Selected References: - Denton, G.H. and W. Karlén, 1973, Holocene climatic variations: their pattern and possible cause. *Quaternary Research* 3, 155–205. - Kreutz, K.J., P.A. Mayewski, L.D. Meeker, M. Twickler, S. Whitlow and I.I. Pittalwala, 1997, Bipolar changes in atmospheric circulation during the Little Ice Age. *Science* 277, 1294-1296. - Kreutz, K.J., P.A. Mayewski, I.I. Pittalwala, L.D. Meeker, M. Twickler and S. Whitlow, 2000, Sea-level pressure variability in the Amundsen Sea region inferred from a West Antarctic glaciochemical record. *Journal of Geophysical Research* 105 (D3), 4047-4059. - Maasch, K., Mayewski, P.A., Rohling, E., Stager, C., Karlén, K., Meeker, L.D., and Meyerson, E., in press, Climate of the past 2000 years, *Geografiska Annaler*. - Mayewski, P.A., L.D. Meeker, M.C. Morrison, M. Twickler, S. Whitlow, K.K. Ferland, D. A, Meese, M.R. Legrand and J.P. Steffenson, 1993a, Greenland ice core "signal" characteristics: An expanded view of climate change. *Journal of Geophysical Research* 98 (D7), 12,839-12,847. - Mayewski, P.A., L.D. Meeker, M. Twickler, S. Whitlow, Q. Yang, W.B. Lyons and M. Prentice, 1997, Major features and forcing of high latitude northern hemisphere atmospheric circulation over the last 110,000 years. *Journal of Geophysical Research* 102 (C12), 26,345-26,366. - Mayewski, P.A., K. A. Maasch, J.W.C. White, E. Meyerson, I. Goodwin, V.I. Morgan., T. van Ommen, J. Souney, and K. Kreutz, in press 2004, A 700 year record of Southern Hemisphere extra-tropical climate variability, *Annals of Glaciology* 39. - Mayewski, P.A., E. Rohling, C. Stager, W. Karlén, K. Maasch, L.D. Meeker, E. Meyerson, F. Gasse, S. van Kreveld, K. Holmgren, J. Lee-Thorp, G. Rosqvist, F. Rack, M. Staubwasser and R. Schneider, in press 2004, Holocene climate variability, *Quaternary Research* 62. 243-255. - Mayewski ,P.A., K. Maasch, Y. Yan, S. Kang, E. Meyerson, S. Sneed, S. Kaspari, D. Dixon, V. Morgan, T. van Ommen and M. Curran, in press 2005, Solar forcing of the polar atmosphere, *Annals of Glaciology*. - Meeker, L.D. and P.A. Mayewski, 2002, A 1400 year long record of atmospheric circulation over the North Atlantic and Asia. *The Holocene* 12 (3), 257-266. - O'Brien, S.R., P.A. Mayewski, L.D. Meeker, D.A. Meese, M.S. Twickler and S.I. Whitlow, 1996, Complexity of Holocene climate as reconstructed from a Greenland ice core. *Science* 270, 1962-1964. - Souney, J.M., P.A. Mayewski, I. Goodwin, V.I. Morgan, and T. van Ommen, 2002, A late Holocene climate record from Law Dome, East Antarctica. *Journal of Geophysical Research* 107 (D22), 4608-4617. - Stager, C., Ryves, D., Cumming, B.F., Meeker, L.D. and Beer, J., 2004, Solar variability and the levels of Lake Victoria, East Africa, during the last millennium. *Journal of Paleoclimatology* 00, 1-9. - Yan, Y., P.A. Mayewski, S. Kang and E. Meyerson, in press 2005, An ice core proxy for Antarctic circumpolar wind intensity, *Annals of Glaciology*. - Zielinski, G., P.A. Mayewski, L. D. Meeker, S. Whitlow and M. Twickler, 1996. A 110,000 year record of explosive volcanism from GISP2 (Greenland) ice core. *Quaternary Research* 45, 109–118.